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ABSTRACT

Convergent enantioselective syntheses of the antifungal agents cystothiazoles A and B are described. The routes feature an asymmetric
crotylation using a propargylic dicobalt hexacarbonyl complex, which provided enhanced diastereoselectivity over the uncomplexed propargylic
acetal. The bisthiazole fragment was united with the side chain through a Stille cross-coupling of a terminal (E)-vinylstannane with a 4-trifloyl-
substituted thiazole.

In 1998, Sakagami and co-workers reported the isolation of
cystothiazoles A and B from a culture broth of the myxo-
bacterium,Cystobacter fuscus.1 Cystothiazoles A and B have
demonstrated potent antifungal activity against a wide range
of fungi. These agents, however, show little or no effect on
inhibition of bacterial growth. Although these compounds
are structurally related to the known antibiotic myxothiazole,2

cystothiazole A is more active against fungi and less
cytotoxic.

Earlier reports have documented the independent total
synthesis of cystothiazoles A, B, C, E and G.3 In this paper,
we describe convergent enantioselective syntheses of cys-
tothiazoles A and B.

Our retrosynthetic strategy is illustrated in Scheme 1. The
target molecules could be divided into two subunits, C1-C7

fragment4 and bisthiazole fragment5, which will be coupled
at a late stage via a Stille cross-coupling reaction. The
C1-C7 fragment could be obtained from theâ-ketoester6,
which was ultimately derived from a crotylsilane addition
to the dicobalt hexacarbonyl complex10. The bisthiazole
fragment5 was synthesized by a regioselective Stille cross-
coupling reaction with the 2,4-bistrifloyl thiazole7 and
4-bromothiazole8.4

In our preliminary studies, it was found that the direct
crotylation between silane (S)-9 and the 3-(trimethylsilyl)
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propargyl dimethyl acetal11produced the homoallylic ether
in high yield (> 80%); however, it did so without useful
selectivity (syn/anti) 2:1). To get around this problem, a
propargylic dicobalt complex5 was used to add steric bulk
to the acetal, which we hoped would create a sufficient
energy difference between the competing diastereotopic
transition states during the crotylation. Gratifyingly, reaction
of silane (S)-9with the cobalt complexed acetal10 resulted
in a significant enhancement of diastereoselectivity (syn/anti
> 10:1), affording the homoallylic ether in 86% yield
(Scheme 2).6 The removal of the dicobalt complex of13

was achieved using trimethylamineN-oxide in MeOH. The
cleavage of the olefin by ozonolysis gave the aldehyde14
in 68% yield, which is volatile and prone to decomposition
at room temperature. This material was submitted to low-
temperature condensation with the lithium enolate derived

from methyl acetate. The resulting mixture of diastereomeric
alcohols15was subjected to an oxidation using PCC to form
the â-ketoester6 in 85% yield (6:1 ketone/enol form
determined by1H NMR). â-Ketoester6 was treated with
trimethyl orthoformate in the presence of catalytic sulfuric
acid to form the desired (E)-â-methoxyacrylate16 in 86%
yield (E:Z ) 7:1 as determined by1H NMR).7 The E
geometry was assigned by measurement of NOE for the
olefin proton and the methoxy group. After deprotection by
K2CO3 in methanol, the alkyne17 was subjected to the Pd-
catalyzed hydrostannylation.â-(E) regioselective product4
was achieved in 84% yield (R:â-(E):â-(Z)) 1:7:0 as
determined by1H NMR relative to the MeO group).8

The bisthiazole fragments5a and5b were derived from
three different thiazoles as illustrated in Schemes 4 and 5.

Accordingly, 4-bromo-2-isopropyl-thiazole8awas obtained
by a regioselective Negishi cross-coupling reaction from the
dibromide 189 in 72% yield.10 As predicted, the reaction
occurred at the most electron-deficient position of the
heterocycle. The synthesis of the 4-bromo-2-(isopropyl-tert-
butyldimethylsilyloxy)-thiazole8b involved a bromine-
lithium exchange, followed by the addition of anhydrous
acetone, followed by treatment of the derived secondary
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alcohol with TBSOTf and 2,6-lutidine, and gave the silyl-
protected bromothiazole8b in 98% yield.

The bisthiazole fragments of1 and2 were formed through
Stille cross-coupling reactions. The required 4-tributylstan-
nylthiazoles19a and19b were prepared from the bromide
by bromine-lithium exchange and the subsequent quench

with Bu3SnCl. The crude stannane was submitted directly
to the Stille cross-coupling reaction with the ditriflate7 using
Pd(PPh3)4 as a catalyst, dioxane as a solvent, and the addition
3 equiv of LiCl. The reactions were achieved in 72 and 68%
yields when R) H or OTBS, respectively.4,11 Identical
conditions were employed for the construction of the
bisthiazole fragments in the final Stille cross-coupling
reaction. Cystothiazole A (1) could be synthesized directly
from the coupling of the C1-C7 fragment4 and bisthiazole
fragment5a in 85% yield. After the Stille cross-coupling of
the C1-C7 fragment4 and bisthiazole fragment5b (72%
yield), a final deprotection step using TBAF gave cystothia-
zole B (2) in 98% yield.

In summary, convergent enantioselective syntheses of the
antifungal agents cystothiazoles A and B have been achieved.
Cystothiazole A was synthesized in 12 linear steps and 15%
overall yield, and cystothiazole B was synthesized in 13
linear steps and 13% overall yield. Key features of the
synthesis include high levels of selectivity in the crotylation
using a propargylic dicobalt hexacarbonyl complex to
establish the syn-homoallylic ether of the side chain. The
bisthiazole fragment was coupled to the left-hand side chain
using a Stille cross-coupling. On balance, the asymmetric
crotylation methodology, together with transition metal-
mediated cross-coupling reaction, offers a promising and
efficient approach to these natural products.
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